Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Позябин Сергей Владимирович

Должность: Ректор

Дата подписания: 24.01.2025 14:50:06

Уникальный програмини ФТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ 7e7751705ad67ae2d Ф 25285e6ag170fe0add2yдарс гвенное бюджетное образовательное учреждение высшего образования

«Московская государственная академия ветеринарной медицины и биотехнологии – МВА имени К.И. Скрябина»

Утверждаю:
Проректор по учебной,
воспитательной работе
и молодежной политике
(20) С10. Пигина

Кафедра Радиобиологии и биофизики имени академика А.Д.Белова

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

«Квантовая химия и строение молекул»

Направление подготовки:

06.05.01 «Биоинженерия и биоинформатика»

профиль подготовки Генетика и селекция сельскохозяйственных животных

Уровень высшего образования специалитет

форма обучения:

очная

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ) СОСТАВЛЕНА НА ОСНОВАНИИ:

- Федеральный государственный образовательный стандарт высшего образования (ФГОС ВО) по специальности 06.05.01 Биоинженерия и биоинформатика (специалитет), утвержденный приказом Министерства образования и науки Российской Федерации от 12 августа 2020 г., регистрационный № 973

РАЗРАБОТЧИКИ:	/		
Заведующий кафедрой	Ans.		М.В.Щукин
(должность)	(подпись, дата)		(ФИО)
Профессор	Meine		В.Ю. Титов
(должность)	(ходпись, дата)		(ФИО)
РЕЦЕНЗЕНТ:			
профессор кафедры вирусологии и микробиологии им. академика В.Н. Сюрина, ФГБОУ ВО «МГАВМиБ — МВА имени К.И.		7 16	.н. Е.И. Ярыгина
Скрябина»,	- Hr.		.н. Б.и. эгрыгина
(должность)	(1108) (1108)		(ФИО)
РАБОЧАЯ ПРОГРАММА ОДОБРЕНА:	дисциплины (м	модуля)	РАССМОТРЕНА
- на заседании кафедры Радиобі	иологии и биофизики име	ени академи	ка А.Д. Белова
Протокол заседания № $\frac{\gamma}{2}$ от «	12 » geraspil	2023 г	
Заведующий кафедрой	Ay		М.В.Щукин
(должность)	(подпись, дата)		(ФИО)
- на заседании Учебно-методиче Протокол заседания № <u></u> от « <u>л</u>		га зоотехнол Э2∳г.	огий и агробизнеса
Председатель комиссии	Selfaces	P	Г.В. Мкртчян
(должность)	(подпись, дата)		(ФИО)

И

СОГЛАСОВАНО:

Начальник учебно- методического управления		С.А.Захарова
(должность)	(подпись, дата)	(ФИО)
Руководитель сектора организации учебного процесса УМУ (должность)	УОМарьви (подпись, дата)	Ю.П. Жарова (ФИО)
Декан факультета зоотехнологий и агробизнеса (должность)	(nodnucь, dama)	А.А. Васильев (ФИО)
Директор библиотеки (должность)	(подпись, дата)	Н.А. Москвитина (ФИО)

1.ПЕРЕЧЕНЬ СОКРАЩЕНИЙ, ИСПОЛЬЗУЕМЫХ В ТЕКСТЕ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ (МОДУЛЯ)

- 1. ОПОП основная профессиональная образовательная программа
- 2. УК универсальная компетенция
- 3. ОПК общепрофессиональная компетенция
- 4. ПК профессиональная компетенция
- 5. з.е. зачетная единица
- 6. $\Phi \Gamma OC\ BO$ федеральный государственный образовательный стандарт высшего образования
- 7. РПД рабочая программа дисциплины
- 8. ФОС фонд оценочных средств
- 9. СР самостоятельная работа

2.ОСНОВНАЯ ХАРАКТЕРИСТИКА ДИСЦИПЛИНЫ

Цель дисциплины:

Целью освоения дисциплины «Квантовая химия и строение молекул» является формирование у обучающихся навыков применения информации о строении молекул и методов квантовой химии для профессионального использования в биоинженерии и биоинформатике

Задачи дисциплины:

- формирование у обучающихся логически упорядоченных знаний о наиболее важных законах и моделях описания природы;
- ознакомление обучающихся с методами квантовой механики и квантовой химии и направлениями практического применения их в биоинженерии и биоинформатике;
- освоение основных экспериментальных навыков квантовой химии, необходимых для использования в биоинженерии и биоинформатике.

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ ПО ДИСЦИПЛИНЕ, СООТНЕСЕННЫЕ С ПЛАНИРУЕМЫМИ РЕЗУЛЬТАТАМИ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Процесс изучения дисциплины «Биофизика» направлен на формирование и развитие следующих компетенций, согласно ФГОС ВО по направлению подготовки 06.05.01 «Биоинженерия и биоинформатика»: ОПК-2

Изучение данной дисциплины направлено на формирование у обучающихся компетенции, представленных в табл. 1

Таблица 1

№ п/п	Код компет	Содержание компетенции	Индикаторы достижения	В результате изучения учебной дисциплины обучающиеся должны:		
	енции	(или ее части)	компетенций	знать	уметь	владеть
1.	ОПК-2	Способен использовать специализиров анные знания фундаментальных разделов математики, физики, химии и биологии для	ОПК- 2.1 — демонстрирует специализированны е знания фундаментальных разделов математики, физики, химии и биологи;	основные идеи и положения квантовой химии, основы математического аппарата квантовой химии, основные идеи и характеристики	применять полученные знания при рассмотрении общехимических вопросов, интерпретировать основные положения химии	приемами простых квантовомеханиче ских и квантово-химических расчётов и их различных вариантов с применением ПК
		проведения	ОПК- 2. 2 –	современных	с точки зрения	

V	исследований в	проводит	вычислительных	квантовой теории,	
C	области	экспериментальные	методов квантовой	применять	
6	биоинженерии,	исследования в	химии	результаты	
6	биоинформати	области		расчётов для	
К	ки и смежных	биоинженерии,		интерпретации	
Д	дисциплин	биоинформатики с		свойств и	
((модулей)	учетом		реакционной	
		специализированны		способности	
		х фундаментальных		молекул	
		знаний.			

4. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

В соответствии с учебным планом по направлению подготовки специальности 06.05.01 «Биоинженерия и биоинформатика» дисциплина «Квантовая химия и строение молекул» относится к обязательной части Блока 1.

Для изучения данной дисциплины необходимы знания, умения и навыки, формируемые дисциплинами при получении высшего образования: «Химия», «Математика», «Физика».

Дисциплина «Квантовая химия и строение молекул» является базовой для изучения следующих дисциплин: «Молекулярная генетика», «Практическая генетика», «Биоинформатика», «Генная инженерия», «Анализ биоинформационных данных», а также практик: «Производственная практика: научно-исследовательская работа», «Преддипломная практика», «Подготовка к процедуре защиты и защита выпускной квалификационной работы»

5. ОБЪЕМ ДИСЦИПЛИНЫ (МОДУЛЯ)

Общий объем дисциплины (модуля) составляет 3 зачетных единиц, 108 часов.

		Очная форма обучения				
Вид учебной работы	Всего, час.		семестр			
		4	-	-	-	
Общий объем дисциплины	108	108	-	-	-	
Контактная работа (аудиторная):	56,3	56,3	-	-	-	
лекции	18	18	-	-	-	
занятия семинарского типа, в том числе:	36	36	-	-	-	
семинары	18	18	-	-	-	
коллоквиумы	-	-	-	-	-	
практические занятия	10	10	-	-	-	
практикумы	-	-	-	-	-	
лабораторные работы	8	8	-	-	-	
другие виды контактной работы	2,3	2,3	-	-	-	
Контактная работа (внеаудиторная)	-	-	-	-	-	
Самостоятельная работа обучающихся:	51,7	51,7	-	-	-	
изучение теоретического курса	-	-	-	-	-	
выполнение домашних заданий (РГР, решение задач, реферат, эссе и другое)	-	-	-	-	-	
курсовое проектирование	-	-	-	-	-	
другие виды самостоятельной работы	51,7	51,7	-	-	-	
Промежуточная аттестация:			-	-	-	
зачет	-	-	-	-	-	
экзамен	экз	экз	-	-	-	
другие виды промежуточной аттестации	-	-	-	-	-	

6. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

Разделы дисциплины (модуля):

Очная форма						
№	Наименование раздела	Лекции,	ча	нарского типа, ас.	CP.	идк
раздела		час.	Семинары практические занятия и др.	Практикумы, лабораторные работы	час.	
1.	Предмет квантовой химии и теории строения молекул	2	4	-	5	ОПК-2
2.	Квантовомеханическое описание простых квантовых систем.	2	2	4	7	ОПК-2
3.	Квантовый гармонический осциллятор.	2	4	-	7	ОПК-2
	Атом водорода, водородоподобные атомы и ионы. Многоэлектронные атомы.	4	4	-	6	ОПК-2
5.	Химическая связь и физические эффекты, приводящие к ее образованию.	2	0	4	6	ОПК-2
6.	Метод Хартри-Фока.	2	4	-	6	ОПК-2
7.	Молекулярные свойства, определяемые электронной ВФ. ВЗМО и НСМО.	2	4	-	7	ОПК-2
8.	Современные квантовохимические методы.	2	4	2	7,7	ОПК-2
	Итого:	18	26	10	51,7	

Содержание дисциплины (модуля) по видам занятий

Лекционные занятия

№ раздел а	Наименование раздела дисциплины (модуля)	Тема лекции	Объем, час.
1	Предмет квантовой химии и теории строения молекул	Феноменологические основы квантовой механики Феноменологическая формулировка квантовой механики. Волновая функция и уравнение Шредингера. Физический смысл волновой функции. Квантовомеханический принцип суперпозиции. Условия, которым должна удовлетворять волновая функция. Типы микрочастиц. Стандартная модель. Аксиоматическая формулировка квантовой механики. Операторы. Постулаты квантовой механики. Представление волновых функций и операторов векторами и матрицами. Свойства матриц и операций над ними. Примеры применения матриц в качестве операторов.	2
2	Квантовомехани ческое описание простых квантовых	Одномерное движение свободной частицы. Трехмерное движение свободной частицы. Движение частицы в одномерном бесконечном потенциальном ящике. Частица в ящике с конечными стенками.	2

	систем.	Столкновение частиц с потенциальным барьером. Проявления туннельного эффекта и надбарьерного отражения в химии	
3	Квантовый гармонический осциллятор	Квантовый гармонический осциллятор в химии. Правила отбора. Движение квантовой частицы в поле центральной силы. Жесткий ротатор. Момент импульса квантовой системы и его связь с собственными функциями жесткого ротатора. Жесткий ротатор в химии.	2
4	Атом водорода, водородоподобные атомы и ионы. Многоэлектронные атомы.	Решение Уравнения Шредингера для атома водорода. Атомные орбитали. Физическая интерпретация квантовых чисел и связь движения с моментом импульса. Гамильтониан и физические особенности многоэлектронного атома. Количественный расчет характеристик многоэлектронных атомов.	4
5	Химическая связь и физические эффекты, приводящие к ее образованию.	Образование ковалентной связи в молекуле водорода. Образование ионной связи. Стабилизация молекул за счет делокализации электронной плотности. Приближенные методы решения уравнения Шредингера для многоэлектронных атомов и молекул. Вариационный метод. Вариационный метод Ритца. Методы валентных связей и молекулярных орбиталей. Приближение Борна-Оппенгеймера. Приближение МО ЛКАО. Теория возмущений.	2
6	Метод Хартри- Фока.	Приближение Хартри. Требование антисимметрии волновой функции. Детерминант Слейтера. Кулоновский и обменный операторы. Процедура самосогласования. Уравнения Хартри-Фока. Канонические орбитали. Особенности и основные свойства уравнений Хартри-Фока. Физический смысл и свойства орбиталей в методе Хартри-Фока. Уравнения Хартри-Фока в приближении МО ЛКАО. Полуэмпирические приближения. Метод Хюккеля	2
7	Молекулярные свойства, определяемые электронной ВФ. ВЗМО и НСМО.	Теорема Купманса. Заряды атомов по Малликену, по Левдину, по Бейдеру, орбитальные заряды. Порядки связи и валентности атомов. Картина химического связывания в методе МО ЛКАО. Взаимодействие орбиталей. Корреляционные диаграммы. Качественная теория МО. Локализация орбиталей. Гибридизация. Натуральные орбитали связей. Квантовохимическая интерпретация валентного штриха и кекулевских структур.	2
8	Современные квантовохимиче ские методы.	Точность квантовохимических методов. Основные источники погрешностей современных квантовохимических методов. Возможности современных квантовохимических методов, их ограничения, вычислительная эффективность, требования к вычислительной техники. Однодетерминантные методы RHF, UHF, ROHF. Методы конфигурационного взаимодействия. Методы, основанные на теории возмущений. Методы связанных кластеров. Теория функционала плотности. Полуэмпирические методы.	2

Занятия семинарского типа

№ раздел а	Наименование раздела дисциплины (модуля)	Тема занятия, краткое содержание	Объем, час.
1.	Предмет квантовой химии и теории строения молекул.	Феноменологические основы квантовой механики. Корпускулярно-волновой дуализм Теория атома по Резерфорду и Бору	4
2.	Квантовомехани ческое описание простых квантовых систем.	Квантовомеханическое описание простейших случаев движения микрочастиц Прохождение частиц через потенциальный барьер	6
3.	Квантовый гармонический осциллятор.	Квантовомеханическая теория водородоподобных атомов и ионов Теория многоэлектронных атомов. Атомные термы	4
4.	Атом водорода, водородоподобные атомы и ионы. Многоэлектронные атомы.	Теория многоэлектронных атомов. Вариационный принцип Квантовохимические методы описания молекул	4
5.	Химическая связь и физические эффекты, приводящие к ее образованию.	Использование симметрии в квантовой химии Разрыв связи в Н2. Проблемы ограниченного метода Хартри-Фока. Полное конфигурационное взаимодействие	4
6.	Метод Хартри- Фока.	Вычисление параметров ЭПР спектра. Зависимость величин констант сверхтонкого взаимодействия от структуры на примерах СНЗ и СГЗ радикалов. Зависимость точности расчётов от размера используемого базиса Расчет термодинамики реакций, поиск переходно- го состояния.	4
7.	Молекулярные свойства, определяемые электронной ВФ. ВЗМО и НСМО.	Применение квантовой химии в реальных исследованиях в рамках научно-исследовательской практики Оптимизация геометрии. Расчёт частот колебаний. Теорема Купманса	4
8.	Современные квантовохимиче ские методы.	Общие принципы выбора расчетной схемы и базисного набора для неэмпирических квантовых расчетов. Знакомство с базами данных по спектроскопии и термодинамическим характеристикам соединений различных классов.	6

Самостоятельная работа обучающегося

№ раздела	Наименование раздела дисциплины (модуля)	Тема занятия	Вид СРС	Объем, час.
1.	Предмет квантовой химии и теории строения молекул.	Феноменологические основы квантовой механики. Корпускулярноволновой дуализм Теория атома по Резерфорду и Бору	Изучение теоретического материала. Изучение видеолекций и виртуальных лабораторий, размещенных в открытом доступе (YouTube, Coursera и др.). Подготовка к занятиям.	5
2.	Квантовомеханичес кое описание простых квантовых систем.	Квантовомеханическое описание простейших случаев движения микрочастиц Прохождение частиц через потенциальный барьер	Изучение теоретического материала. Изучение видеолекций и виртуальных лабораторий, размещенных в открытом доступе (YouTube, Coursera и др.). Подготовка к занятиям.	7
3.	Квантовый гармонический осциллятор.	Квантовомеханическая теория водородоподобных атомов и ионов Теория многоэлектронных атомов. Атомные термы	Изучение видеолекций и виртуальных лабораторий, размещенных в открытом доступе (YouTube, Coursera и др.). Подготовка к занятиям	7
4.	Атом водорода, водородоподобные атомы и ионы. Многоэлектронные атомы.	Теория многоэлектронных атомов. Вариационный принцип Квантовохимические методы описания молекул	Изучение видеолекций и виртуальных лабораторий, размещенных в открытом доступе (YouTube, Coursera и др.). Подготовка к занятиям	6
5.	Химическая связь и физические эффекты, приводящие к ее образованию.	Использование симметрии в квантовой химии Разрыв связи в Н2. Проблемы ограниченного мето- да Хартри-Фока. Полное конфигурационное взаимодействие	Изучение видеолекций и виртуальных лабораторий, размещенных в открытом доступе (YouTube, Coursera и др.). Подготовка к занятиям	6
6.	Метод Хартри- Фока.	Вычисление параметров ЭПР спектра. Зависимость величин констант сверхтонкого взаимодействия от структуры на примерах СНЗ и СF3 радикалов. Зависимость точности расчётов от размера используемого базиса Расчет термодинамики реакций, поиск переходного состояния.	Изучение видеолекций и виртуальных лабораторий, размещенных в открытом доступе (YouTube, Coursera и др.). Подготовка к занятиям	6
7.	Молекулярные свойства, определяемые электронной ВФ. ВЗМО и НСМО.	Применение квантовой химии в реальных исследованиях в рамках научноисследовательской практики Оптимизация геометрии.	Изучение видеолекций и виртуальных лабораторий, размещенных в открытом доступе (YouTube, Coursera и др.). Подготовка к занятиям	7

	Расчёт частот колебаний. Теорема Купманса		
Современ квантовом методы.	общие принципы выбора расчетной схемы и базисного набора для неэмпирических квантовых расчетов. Знакомство с базами данны по спектроскопии и термодинамическим характеристикам соединений различных классов.	Изучение видеолекций и виртуальных лабораторий, размещенных в открытом доступе (YouTube, Coursera и др.). Подготовка к занятиям	7,7

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ Перечень основной и дополнительной литературы:

Основная литература

- 1. Барановский В.И. Квантовая химия и строение молекул [Электронный ресурс] -428 с. ISBN 978-5-8114-3961-4 URL: Лань: электронно-библиотечная система. https://e.lanbook.com/book/206195 Санкт-Петербург: Лань, 2022.
- 2. Назмитдинов Р. Г., Новикова С. А. Квантовая механика и квантовая химия: учебное пособие
- [Электронный ресурс]. 123 с. ISBN 978-5-8114-1608-0 Лань: электронно-библиотечная система. https://e.lanbook.com/book/211691 Санкт-Петербург: Лань, 2021
- 3. Александрова Э.А. Неорганическая химия. Теорети-ческие основы и лабораторный практикум: учебник [Электрон-ный ресурс] /3-е изд. -396 с, ISBN 978-5-8114-3473-2/ Лань: элект-ронно-библиотечная система. /URL https://e.lanbook.com/book/130569 Санкт-Петербург: Лань, 2020
- 4. Кириллов В.В. Неорганическая химия. Теорети-ческие основы: : учебник [Элект-ронный ресурс] /-352 с.- ISBN 978-5-8114-4376-5 // Лань: элект-ронно-библиотечная система. URL https://e.lanbook.com/book/131011 Санкт-Петербург: Лань, 2020
- 5. Сергеева И.В., Амаль-чиева О.А., Мохонько Ю.М., Андри-янова Ю.М., Гусакова Н.Н. Практикум по химии: физическая и коллоидная химия: учебное пособие [Электронный ресурс] /. 209 с.ISBN 978-5-00140-947-2 http://library.sgau.ru/cgi-bin/irbis64r_01/cgiirbis_64.exe ФГБОУ ВО Саратовский ГАУ. Сара-тов: Амирит, 2022
- 6. Кайгородова Е.А., Макаро-ва Н.А., Органическая, физическая и кол-лоидная химия: учебное пособие [Электронный ресурс] -137 с. Лань:электронно-библиотечная система.-URL: https://e.lanbook.com/book/171574 Краснодар:КубГАУ,2020
- 7. Кумыков, Р.М., Иттиев А.Б. Физическая и коллоидная химия: учебное пособие [Электронный ресурс] // , 236 с. Лань:электонно-библиотечная система.-URL: https://e.lanbook.com/book/116357 ISBN 978-5-8114-2885-4 Санкт-Петербург: Лань, 2019
- 8. Игнатов С.К. Квантовая химия и строение молекул: Учебное пособие [Электронный ресурс] / 136 с.: 60х90 1/16. https://e.lanbook.com/book/153007 Нижний Новгород: Изд-во Нижегородского университета 2016.
- 9. Крашенини В. И., Кузьмина Л. В., Газенаур Е. Г. Квантовая химия [Электронный ресурс] / 82 с. https://e.lanbook.com/book/135217 Кемерово: Кемеровский государственный университет, 2019
- 10. Ширяев А.К. Квантовая механика и квантовая химия: Учебно-методическое пособие [Электронный ресурс] / 2-е изд., стер.. 119 // Лань : электронно-библиотечная система. URL: https://e.lanbook.com/book/127839 Архитектурно-строительный институт Самарского государственного технического университета 2017

б) ресурсы информационно-телекоммуникационной сети «Интернет»

Для освоения дисциплины рекомендуются следующие сайты информа-ционнотелекоммуникационной сети «Интернет»:

Интернет-ресурсы: База данных Spectral Database for Organic Compounds (SDBS) http://riodb01.ibase.aist.go.jp/sdbs База данных **NIST** Chemistry WebBook http://webbook.nist.gov/chemistry База данных результатов квантовхимических расчетов Property Computed Data Base for Molecules (CPDB) http://riodb.ibase.aist.go.jp/cpdb/index e.html База данных химических сдвигов NmrShiftDB2 http://nmrshiftdb.nmr.uni-koeln.de Программа Firefly http://classic.chem.msu.su/gran/firefly/index.html образовательный Электронный Хемоинформатика и молекулярное моделирование площадки http://zilant.kfu-_ elearning.ru/course/view.php?id=376Γ)

периодические издания

http://read.sgau.ru/files/pages/516/14241720620.pdf (электронный журнал Вавиловского университета)

- 02.00.00 ХИМИЧЕСКИЕ НАУКИ / Политематический сетевой электронный научный журнал Кубанского государственного аграрного университета,

http://znanium.com/bookread2.php?book=524285

Журналы: Аграрный научный журнал»- http://agrojr.ru

Журнал «Экология» -http://www.naukaran.com/zhurnali/katalog/jekologijagEkaterin-burg

в) информационные справочные системы и профессиональные базы данных:

Рекомендуется применять информационные справочные системы и профессиональные базы данных, доступ к которым организован библиотекой университета через локальную вычислительную сеть.c

Для пользования электронными изданиями рекомендуется использовать следующие информационные справочные системы и профессиональные базы данных:

- 1. Электронная библиотечная система «Лань» http://e.lanbook.com.
- Электронная библиотека издательства «Лань» ресурс, включающий в себя как электронные версии книг издательства «Лань», так и коллекции полнотекстовых файлов других российских издательств. После регистрации с компьютера университета доступ с любого компьютера, подключенного к сети Интернет.
- 2. «Университетская библиотека ONLINE» http://www.biblioclub.ru.
- Электронно-библиотечная система, обеспечивающая доступ к книгам, конспектам лекций, энциклопедиям и словарям, учебникам по различным областям научных знаний, материалам по экспресс-подготовке к экзаменам. После регистрации с компьютера университета доступ с любого компьютера, подключенного к сети Интернет.
- 3. Научная электронная библиотека eLIBRARY.RU. http://elibrary.ru.
- Российский информационный портал в области науки, медицины, технологии и образования. На платформе аккумулируются полные тексты и рефераты научных статей и публикаций. Доступ с любого компьютера, подключенного к сети Интернет. Свободная регистрация.
- 4. Информационная система «Единое окно доступа к образовательным ресурсам». http://window.edu.ru.

Информационная система предоставляет свободный доступ к каталогу образовательных Интернет-ресурсов и полнотекстовой электронной учебно-методической библиотеке для общего и профессионального образования. Доступ с любого компьютера, подключенного к сети Интернет.

5. ЭБС «Юрайт» http://www.biblio-online.ru.

Электронно-библиотечная система издательства «Юрайт». Учебники и учебные пособия от ведущих научных школ. Тематика: «Бизнес. Экономика», «Гуманитарные и общественные науки», «Естественные науки», «Информатика», «Прикладные науки. Техника»,

«Языкознание. Иностранные языки». Доступ - после регистрации с компьютера университета с любого компьютера, подключенного к Internet.

6. Профессиональная база данных «Техэксперт».

Современные, профессиональные справочные базы данных, содержащие нормативноправовую, нормативно-техническую документацию и уникальные сервисы.

7. Поисковые интернет-системы Яндекс, Rambler, Google и др.

г) информационные технологии, используемые при осуществлении образовательного процесса:

К информационным технологиям, используемым при осуществлении образовательного процесса по дисциплине, относятся:

- персональные компьютеры, посредством которых осуществляется доступ к информационным ресурсам и оформляются результаты самостоятельной работы;
- проекторы и экраны для демонстрации слайдов мультимедийных лекций;
- активное использование средств коммуникаций (электронная почта, тематические сообщества в социальных сетях и т.п.).

8. ПЕРЕЧЕНЬ ПРОГРАММНОГО ОБЕСПЕЧЕНИЯ

Лицензионное и свободно распространяемое программное обеспечение, в том числе отечественного производства:

		Правообладатель ПО	Доступность	Ссылка на Единый реестр российских
$N_{\underline{0}}$	Наименование	(наименование владельца	(лицензионное, свободно	программ для ЭВМ и БД (при
		ПО, страна)	распространяемое)	наличии)
1	Операционная система	ООО «Юбитех»,	Свободно	https://reestr.digital.gov.ru/reestr/307624
1.	UBLinux	Российская Федерация	распространяемое	<u>/</u>
2	Офисные приложения	ООО «Алми Партнер»,	Свободно	https://reestr.digital.gov.ru/reestr/308464
۷.	AlterOffice	Российская Федерация	распространяемое	<u>/</u>
3.	Антивирус Dr. Web.	Компания «Доктор Веб»,	Лицензионное	https://reestr.digital.gov.ru/reestr/301426
٥.	i minimpy o Bit weet.	Российская Федерация		<u> </u>

9. ОЦЕНОЧНЫЕ СРЕДСТВА

Оценочные средства для проведения текущего и промежуточного контроля знаний по дисциплине (модулю) «Квантовая химия и строение молекул» представлены в виде фонда оценочных средств (далее – Φ OC) в Приложении к настоящей рабочей программе дисциплины (модуля).

10. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ (МОДУЛЯ)

№ п/п	Наименование специальных помещений и помещений для самостоятельной работы	Оснащенность специальных помещений и помещений для самостоятельной работы
1	Учебная аудитория для проведения учебных занятий, оснащенная оборудованием и техническими средствами обучения (№ 1)	Рабочее место преподавателя, рабочие места обучающихся, учебная доска, комплект мультимедийного оборудования (экран, проектор, компьютер, подключенный к сети «Интернет» и обеспеченный доступом в электронную информационно-образовательную среду ФГБОУ ВО МГАВМиБ – МВА имени К.И. Скрябина)
2	Учебная аудитория для проведения учебных занятий, оснащенная оборудованием и	Рабочее место преподавателя, рабочие места обучающихся, комплект специализированной

№ п/п	Наименование специальных помещений и помещений для самостоятельной работы	Оснащенность специальных помещений и помещений для самостоятельной работы
	техническими средствами обучения (№ 205) (г Москва, улица Академика Скрябина 23, стр. 3)	мебели, интерактивная учебная доска, оборудование для проведения практических занятий по оптическим методам контроля биосистем (спектрофотометр, хемилюминометр)
3	Учебная аудитория для проведения учебных занятий, оснащенная оборудованием и техническими средствами обучения (№ 204) (г. Москва, улица Академика Скрябина 23, стр. 3)	Рабочее место преподавателя, рабочие места обучающихся, комплект специализированной мебели, интерактивная учебная доска, оборудование для проведения практических занятий по оптическим методам контроля биосистем (спектрофотометр, хемилюминометр)

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

текущего контроля / промежуточной аттестации обучающихся при освоении ОПОП ВО, реализующей ФГОС ВО

Кафедра Радиобиологии и биофизики имени академика А.Д.Белова

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

«Квантовая химия и строение молекул»

направление подготовки 06.05.01 «Биоинженерия и биоинформатика»

профиль подготовки Генетика и селекция сельскохозяйственных животных

уровень высшего образования специалитет

форма обучения: очная

1. ОЦЕНКА РЕЗУЛЬТАТОВ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Оценка уровня учебных достижений обучающихся по дисциплине осуществляется в виде текущего контроля успеваемости и промежуточной аттестации.

Текущий контроль успеваемости по дисциплине осуществляется в формах:

- 1. Опрос
- 2. Тест

Промежуточная аттестация по дисциплине осуществляется в форме: зачет

2. СООТНОШЕНИЕ ПОКАЗАТЕЛЕЙ И КРИТЕРИЕВ ОЦЕНИВАНИЯ КОМПЕТЕНЦИЙ СО ШКАЛОЙ ОЦЕНИВАНИЯ И УРОВНЕМ ИХ СФОРМИРОВАННОСТИ

Планируемые результаты обучения	Критерии оценивания результатов обучения	Шкала оценивания	Уровень сформированно й компетенции
	ОПК-2		
Знать: основные идеи и положения квантовой химии, основы математического аппарата	Глубокие знания основных идей и положений квантовой химии, основы математического аппарата квантовой химии, основных идеи и характеристик современных вычислительных методов квантовой химии	Отлично	Высокий
квантовой химии, основные идеи и характеристики современных вычислительных методов квантовой химии	Несущественные ошибки в знании основных идей и положений квантовой химии, основ математического аппарата квантовой химии, основных идеи и характеристики современных вычислительных методов квантовой химии	Хорошо	Повышенный
	Фрагментарные представления об основных идеях и положениях квантовой химии, основ математического аппарата квантовой химии, основных идеи и характеристик современных вычислительных методов квантовой химии	Удовлетворительно	Пороговый
	Отсутствие знаний основных идеи и положений квантовой химии, основ математического аппарата квантовой химии, основных идеи и характеристик современных вычислительных методов квантовой химии	Неудовлетворительно	Не сформирован
Уметь: применять полученные знания при рассмотрении общехимических вопросов, интерпретировать основные положения химии с точки	Уметь в совершенстве применять полученные знания при рассмотрении общехимических вопросов, интерпретировать основные положения химии с точки зрения квантовой теории, применять результаты расчётов для интерпретации свойств и реакционной способности молекул	Отлично	Высокий
зрения квантовой теории, применять результаты расчётов для интерпретации свойств и реакционной способности молекул.	Уметь применять полученные знания при рассмотрении общехимических вопросов, интерпретировать основные положения химии с точки зрения квантовой теории, применять результаты расчётов для интерпретации свойств и реакционной способности молекул	Хорошо	Повышенный
	Уметь частично применять полученные знания при рассмотрении общехимических вопросов, интерпретировать основные положения химии с точки зрения квантовой теории, применять результаты расчётов для интерпретации свойств и реакционной способности молекул	Удовлетворительно	Пороговый
	Неумение применять полученные знания при рассмотрении общехимических вопросов, интерпретировать основные положения химии с точки зрения квантовой теории, применять результаты расчётов для интерпретации свойств и	Неудовлетворительно	Не сформирован

	реакционной способности молекул		
Владеть: приемами	Полное овладение приемами простых	Отлично	Высокий
простых	квантовомеханических и квантово-химических		
квантовомеханических и	расчётов и их различных вариантов с применением		
квантово-химических	ПК		
расчётов и их различных	Владение приемами простых квантовомеханических	Хорошо	Повышенный
вариантов с применением	и квантово-химических расчётов и их различных	•	
ПК	вариантов с применением ПК		
	Фрагментарное владение приемами простых	Удовлетворительно	Пороговый
	квантовомеханических и квантово-химических	•	•
	расчётов и их различных вариантов с применением		
	ПК		
	Отсутствие навыков владения приемами простых	Неудовлетворительно	Не сформирован
	квантовомеханических и квантово-химических	, ,	
	расчётов и их различных вариантов с применением		
	ПК		

3. ТЕКУЩИЙ КОНТРОЛЬ И ПРОМЕЖУТОЧНАЯ АТТЕСТАЦИЯ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ (МОДУЛЮ)

Текущий контроль успеваемости обучающихся:

№ п/п	Наименование раздела дисциплины (модуля)	Форма текущего контроля	Оценочные средства	идк
1.	Предмет квантовой химии и теории строения молекул	Опрос	Банк вопросов к опросу	ОПК-2
2.	Квантовомеханическое описание простых квантовых систем.	Опрос	Банк вопросов к опросу	ОПК-2
3.	Квантовый гармонический осциллятор.	1. Опрос 2. Тест	1. Банк вопросов к опросу 2. Банк тестовых заданий	ОПК-2
4	Атом водорода, водородоподобные атомы и ионы. Многоэлектронные атомы.	1. Опрос 2. Тест	1. Банк вопросов к опросу 2. Банк тестовых заданий	ОПК-2
5.	Химическая связь и физические эффекты, приводящие к ее образованию.	1. Опрос 2. Тест	1. Банк вопросов к опросу 2. Банк тестовых заданий	ОПК-2
6.	Метод Хартри-Фока.	1. Опрос 2. Тест	1. Банк вопросов к опросу 2. Банк тестовых заданий	ОПК-2
7.	Молекулярные свойства, определяемые электронной ВФ. ВЗМО и НСМО.	1. Опрос 2. Тест	1. Банк вопросов к опросу 2. Банк тестовых заданий	ОПК-2
8.	Современные квантовохимические методы.	1. Опрос 2. Тест	1. Банк вопросов к опросу 2. Банк тестовых заданий	ОПК-2

Промежуточная аттестация

Способ проведения промежуточной аттестации:

- зачёт проводится в 4 семестре 2 курса;

Перечень видов оценочных средств, используемых для промежуточной аттестации по дисциплине (модулю):

1. Банк вопросов к зачету.

4. ОЦЕНОЧНЫЕ МАТЕРИАЛЫ ДЛЯ ПРОВЕДЕНИЯ ТЕКУЩЕГО КОНТРОЛЯ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности,

характеризующих этапы формирования компетенций в процессе освоения образовательной программы

3.1. Входной контроль

Bходной контроль — средство проверки знаний и умений обучающихся , которое может быть использовано для контроля приобретенных ранее при обучении навыков и умений.

Цель проведения входного контроля: проверка глубины знаний и умений, приобретенных ранее при обучении.

Примерные вопросы входного контроля

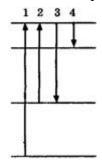
- 1. Основные понятия химии: атом, молекула, простое и сложное вещество, изотопы, химический элемент, типы химических реакций, атомная и молекулярная массы, моль, молярная масса, молярный объем.
- 2. Закон сохранения массы. Закон сохранения энергии. Взаимосвязь энергии и массы (уравнение Эйнштейна).
- 3. Закон постоянства состава. Закон кратных отношений. Нестехиометрические соединения.
- 4. Уравнение Менделеева Клапейрона (уравнение состояния идеального газа).
- 5. Закон Авогадро и следствия из него.
- 6. Основные классы неорганических соединений (кислоты, соли, оксиды, основания): определение, типы, химические свойства, получение.
- 7. Закон эквивалентов. Понятие эквивалента, эквивалентного объема, молярной массы эквивалента. Расчет молярной массы эквивалента элемента, оксида, кислоты, основания, соли.
- 8. Основные сведения о строении атома (состав атомных ядер, изотопы, определение химического элемента).
- 9. Двойственная (корпускулярно-волновая) природа света, электрона.
- 10. Энергетическое состояние электрона в атоме. Физический смысл квантовых чисел.
- 11. Периодическая система элементов Д.И. Менделеева. Электронная конфигурация атомов.
- 12. Порядок заполнения электронами орбиталей: принцип наименьшей энергии, принцип Паули, правило Хунда, правило Клечковского.
- 13. Периодический закон Д.И. Менделеева.
- 14. Зависимость свойств элементов от их положения в периодической системе.
- 15. Периодичность изменений свойств (радиус, энергия ионизации, сродство к электрону, электроотрицательность).
- 16. Химическая связь. Условия образования химической связи. Энергия связи.
- 17. Ковалентная связь (полярная и неполярная). Дипольный момент.
- 18. Свойства ковалентной связи: насыщаемость, направленность (\Box и \Box связи), поляризуемость.
- 19. Гибридизация орбиталей sp, sp2, sp3.
- 20. Обменный и донорно-акцепторный механизмы образования ковалентной связи.
- 21. Ионная связь. Природа и свойства ионной связи. Примеры образования.
- 22. Эволюция представления о элементарных химических частицах.
- 23. Роль химии в жизни человека.
- 24. Номенклатура неорганических соединений.

- 25. В чем состоит значение открытия Мозли?
- 26. Условия образования водородной связи.
- 27. Металлическая связь. Электронное строение и особенности свойств металлов.
- 28. Растворы. Виды растворов по агрегатному состоянию. Понятие растворителя, растворенного вещества.
- 29. Понятие: системы, фазы, гомогенные и гетерогенные системы.
- 30. Понятие растворителя, растворенного вещества. Гидратная теория Д.И. Менделеева. Сольватация. Гидратация. Сольваты. Гидраты.
- 31. Растворимость, произведение растворимости.
- 32. Концентрация раствора. Способы выражения концентрации растворов: а) массовая доля (процентная концентрация); б) молярная концентрация; в) молярная концентрация эквивалента; г) моляльная концентрация; д) титр. Формула титрования.
- 34. Особенности растворов кислот, оснований и солей.
- 35. Теория электролитической диссоциации (ТЭД) Аррениуса. Константа и степень диссоциации. Произведение растворимости.
- 36. Слабые электролиты, их свойства. Теория Аррениуса, её значение, недостатки.
- 37. Применение закона действующих масс к растворам слабых электролитов. Закон разбавления Оствальда.
- 38. Протонная теория Бренстеда-Лоури. Кислотно-основные пары.
- 39. Отклонение свойств растворов слабых электролитов от законов
- Вант-Гоффа и Рауля. Изотонический коэффициент, его связь со степенью диссоциации.
- 40. Особенности свойств растворов сильных электролитов. Теория Дебая-Хюккеля. Активность, коэффициент активности. Ионная сила раствора.
- 41. Применение закона действующих масс в гомогенных и гетерогенных системах. Активность иона.
- 42. Диссоциация воды. Ионное произведение воды. Водородный показатель (рН).
- 43. Гидролиз солей.
- 71. Строение комплексных соединений.
- 72. Виды химической связи в комплексах. Диссоциация комплексных соединений, Константа нестойкости.
- 73. Кристаллогидраты и двойные соли как комплексные соединения.
- 74. Пространственное расположение координированных групп в комплексе. Природа сил, обусловливающих комплексообразование.
- 75. Понятие скорости химической реакции. Математическое выражение.
- 76. Зависимость скорости химической реакции от концентрации реагирующих веществ (закон действующих масс). Константа скорости.
- 77. Зависимость скорости химических реакций от температуры. Правило Вант Гоффа. Уравнение Аррениуса.
- 78. Ускорение химических реакций (катализ). Понятие о катализаторах и каталитических реакциях. Механизм действия катализатора.
- 79. Изменение внутренней энергии и энтальпии в химических реакциях.
- 80. Закон Гесса и следствия из закона Гесса.
- 83. Окислительно-восстановительные реакции (ОВР). Степень окисления. Понятие процессов окисления, восстановления, окислителя, восстановителя.
- 84. Типы ОВР. Составление уравнений ОВР.
- 85. Комплексные соединения. Роль комплексных соединений в биосфере.
- 86. Зависимость скорости реакции от природы веществ. Энергия активации химических реакций. Активированный комплекс.
- 87. Химическое равновесие. Константа химического равновесия.
- 88. Факторы, влияющие на направление химических реакций и химическое равновесие (концентрация, температура, давление).
- 89. Обратимые и необратимые химические реакции. Признаки необратимости реакции

- 90. Живые организмы, как термодинамические системы.
- 91. Предмет органической химии. Теория химического строения А.М.Бутлерова.
- 92. Классификация органических соединений и номенклатура.
- 93. Гомологический ряд алканов. Изомерия. Номенклатура. Физические и химические свойства. Радикальные реакции: галогенирование, нитрование, сульфирование, окисление, крекинг.
- 94. Гомологический ряд алкенов. Геометрическая изомерия. Номенклатура. Физические и химические свойства. Реакции радикального и электрофильного присоединения галогенов, галогеноводородов, воды. Реакции окисления, полимеризации.
- 95. Гомологический ряд алкинов. Изомерия и номенклатура. Физические и химические свойста. Реакции электрофильного присоединения галогенов, галогеноводородов, воды. Реакции полимеризации, конденсации, восстановления, окисления. Реакции замещения подвижного атома водорода.
- 96. Гомологический ряд аренов. Изомерия, Номенклатура. Физические и химические свойства.

Тестовые задания

Тесты – это система стандартизированных заданий, позволяющих автоматизировать процедуру измерения уровня знаний и умений обучающегося.


По дисциплине «Химия» предусмотрено проведение устного и письменного тестирования. Тестирование рассматривается как контроль успеваемости и проводится после изучения определенной темы раздела дисциплины. В одном варианте теста содержится 5-10 вопросов. Каждый правильный ответ оценивается в 1, максимальная сумма баллов за тестирование 5-10

Результаты тестирования учитываются при проведении промежуточной аттестации.

Пример тестового опроса

- 1. Энергия фотона в первом пучке света в 2 раза больше энергии фотона во втором пучке. Отношение длины электромагнитной волны в первом пучке света к длине волны во втором пучке равно
- 1)1 2)2 3) $\sqrt{2}$ 4) $\frac{1}{2}$
- 2. Электроскоп соединен с цинковой пластиной и заряжен отрицательным зарядом. При освещении пластины ультрафиолетовым светом электроскоп разряжается. С уменьшением частоты света при неизменной мощности светового потока максимальная кинетическая энергия освобождаемых электронов
- 1) не изменяется
- 2) уменьшается
- 3) увеличивается
- 4) сначала уменьшается, затем увеличивается
- 3. При освещении металлической пластины с работой выхода A монохроматическим светом длиной волны λ происходит фотоэлектрический эффект, максимальная кинетическая энергия освобождаемых электронов равна Емакс. Каким будет значение максимальной кинетической энергии фотоэлектронов при освещении монохроматическим светом длиной волны 0.5λ пластины с работой выхода A/2?
- 1) Емакс A/2 2) **Емакс** + A/2 3) 2Емакс 4) Больше 2Емакс + A/2
- 4. В соответствии с одним из постулатов Н. Бора атом не излучает элек-тромагнитную энергию, пока электрон...
- 1) двигается по первой стационарной орбите
- 2) двигается по любой стационарной орбите
- 3) неподвижен
- 4) переходит с одной стационарной орбиты на другую

5. На рисунке представлена диаграмма энергетических уровней атома. Какой цифрой обозначен переход, соответствующий поглощению атомом фотона самой малой частоты?

1) 1 2) 2 3)3 4) 4

Лабораторная работа

Лабораторная работа по квантовой химии- это форма обучения, позволяющая проверить умения и навыки выполнения вычислительного эксперимента по конкретному изучаемому методу анализа. Она основана на процессе осознания изучаемого материала на основе самостоятельной предварительной учебной деятельности обучающегося.

При этом обсуждаются наиболее трудные для усвоения и понимания вопросы.

При оценке лабораторной работы учитываются:

- -знание основных понятий и законов по теме лабораторной работы,
- -умение объяснить сущность проведения эксперимента, сделать выводы и и обобщения, давать аргументированные ответы,
- степень самостоятельности при выполнении эксперимента,
- -правильность проведения отдельных стадий лабораторной работы,
- -письменный отчет по лабораторной работе, грамотность в оформлении

Лабораторная работа №___. «Получение информации из баз данных химических соединений»

Прежде чем синтезировать новое вещество или уже известное, но другим путем, проводят литературный поиск. Современные компьютерные базы данных содержат информацию обо всех открытых в настоящее время веществах. Проведение компьютерных расчетов методами квантовой химии позволяет оценить термодинамическую устойчивость соединения и осуществимость процесса синтеза, предсказать свойства еще не полученного соединения, выбрать один из возможных путей осуществления процесса.

Для этого могут потребоваться некоторые термодинамические характеристики веществ: молекулярный вес, длины связей и валентные углы (геометрическое строение), температуры фазовых переходов (изменения кристаллической структуры, плавления, кипения, сублимации, точки Кюри и др.), теплота образования, энтропия, температурные коэффициенты теплопроводности, энергии диссоциации; спектральные свойства (потенциалы ионизации, сродство к электрону, частоты и интенсивности колебаний, моменты инерции, коэффициенты экстинкции, химические сдвиги и др.)

Из сети Internet могут быть получены также программы квантово-химических расчетов, наборы базисных функций элементов, свойства веществ, рассчитанные методами квантовой химии.

n		4
39 II	ание	
Эад	апис	

Найти ссылки на Фонд обмен	на квантово-химическими	программами.
Получить и сохранить катало	ог Фонда.	

□ Найти в каталоге описание программ неэмпирических квантово-химических расчетов.
□ Сравнить программы:
1. По платформе, на которую они рассчитаны,
2. По учету энергии корреляции,

- По учету энергии корреляции,
 По использованию базисных функций,
- 4. По гибкости алгоритмов оптимизации энергии,
- 5. По наличию вспомогательных визуализационных, редакционных и интерпретационных
- 6. По скорости выполнения расчетов

программ,

- 7. По возможностям параллельных вычисления,
- 8. По используемым форматам входных, выходных и промежуточных результатов.

Предлагается следующий список программ:

№вар.	Ab initio	полуэмпирика	макромолекулы	вспомогательные
1	GAUSSIAN	MOPAC	VAMP	MOLDEN
1.				
_	GAMESS	AMPAC	ASP	Chem-3D
2.				
	HyperChem	Chem-X	DIVA	BABEL
3.				
	CADPAC	PCModel	Пакет TSAR	GEOMVIEW
4.				
	SPARTAN	MOPAC	DL_POLY	Moledit
5.				
	CRYSTAL	AMPAC	MacroModel	Glu
6.				
	ALCHEMY	Chem-X	Пакет TSAR	Gm
7.			1200.01 12121	
	SYBYL	PCModel	DL_POLY	Mv
8.	SIBIL	1 Civiodoi		171 7
	VIIE	Chara V	Mana Madal	V
9.	XHF	Chem-X	MacroModel	Vega

Задание 2

В первой лабораторной работе Вы пользовались программой неэмпирических и полуэмпирических квантово-химических расчетов GAMESS. Полученные Вами результаты,

сохраненные в LOG файлах, могут быть легко обработаны специализированными
визуализационными и интерпретационными программами.
□ Вам предлагается найти и получить через сеть программы обработки результатов
расчетов.
\square С их помощью визуализировать рассчитанные в Вашей работе молекулы и определить их геометрические параметры (Vega).
□ Научиться определять заряды на атомах, энергии орбиталей из LOG файла не с помощью текстового редактора, а с помощью специальной программы (Vega).
□ Построить энергетическую диаграмму(Vega).
□ Провести анализ выполнения процесса минимизации энергии в ходе расчетов по программе GAMESS, динамики градиента (Gm).
Задание 3
Во второй лабораторной работе Вы пользовались программой полуэмпирических квантовохимических расчетов. Если это были программы MOPAC или AMPAC, полученные Вами результаты могут быть легко обработаны специализированными визуализационными и интерпретационными программами. Если были использованы другие программы, воспользуйтесь тестовыми примерами, входящими в пакет программ. Вам предлагается найти и получить через сеть программы обработки результатов расчетов.
\square С их помощью визуализировать рассчитанные в Вашей работе молекулы и определить их геометрические параметры (Glu ,Mv).
\square Научиться определять заряды на атомах, энергии орбиталей из LOG файла не с помощью текстового редактора, а с помощью специальной программы (Glu, Mv).
□ Построить энергетическую диаграмму(Glu, Mv). Задание 4
Для квантово-химических расчетов пленок, полимеров и кристаллов разработана программа CRYSTAL. Базисные функции, используемые в программе постоянно дополняются, т.о. позволяя рассчитывать свойства более широкого спектра соединений. ☐ Необходимо найти сайт разработчиков программы.
□ Получить и сохранить описание на программу.
□ Получить и сохранить тестовые примеры.
□ Получить и сохранить список элементов, для которых имеются базисные функции. Описание выполнено в виде таблицы Менделеева в HTML формате. Для тех элементов, которые сопровождаются базисными наборами, в таблице есть гиперссылки.
□ Получить и сохранить базисные функции, добавленные в течении 1999г.
 □ Список литературы с описанием результатов расчетов и выводов сохранить и проанализировать.

Задание 5

К наиболее серьезным преимуществам работы в сети является возможность выполнения расчетов на удаленном компьютере. Все современные научные, исследовательские и учебные центры, университеты, где сталкиваются с преподаванием и практическим использованием квантово-химических расчетов в своем компьютерном парке имеют суперкомпьютеры - рабочие станции, как правило RISC - архитектуры. Персональные же компьютеры используются лишь для обеспечения терминального доступа к ним. На персоналках составляются задания - входные и отладочные файлы. Таким образом обеспечивается рациональное использование вычислительных ресурсов. Что касается неэмпирических расчетов, то их выполнение на персоналках пять лет назад даже для простых молекул было нереальным по времени счета.

для примера в приложении приведена страничка, с которои можно на удаленном
компьютере посчитать молекулу воды.
□ Найти сайты суперкомпьютерных центров, выполняющих проекты по квантовой химии.
□ Найти центр, обеспечивающий тестовый или демонстрационный вход для выполнения
неэмпирических расчетов.
□ Получить информацию о вычислительных ресурсах выбранного центра.
□ Выполнить расчет и сохранить информацию.
□ Оценить производительность вычислений но приведенным центром данным (Benchmark).
\Box Оценить время счета для молекулы со $100, 200, 500$ базисными функциями.
□Оценить число атомов в молекуле (из ряда H-Ar), на расчет которой уйдет день; неделя;
месяц. Какую по сложности молекулу можно рассчитать за год непрерывных вычислений на
CRAY-90

Рубежный контроль

Представляет собой средство контроля усвоения учебного материала разделов дисциплины, организованное как учебное занятие в виде собеседования обучающегося и преподавателя.

- -Цель проведения рубежного контроля
- проверка и оценка знаний и умений обучающихся по данному конкретному разделу дисциплины.

Вопросы рубежного контроля, рассматриваемые на аудиторных занятиях и выносимые на самостоятельное изучение:

Рубежный контроль №1

- 1. Предмет квантовой химии и теории строения молекул. 2. Феноменологические основы квантовой механики Феноменологическая формулировка квантовой механики.
- 3. Волновая функция и уравнение Шредингера. Физический смысл волновой функции.
- 4. Квантовомеханический принцип суперпозиции. Условия, которым должна удовлетворять волновая функция.
- 5. Типы микрочастиц. Стандартная модель.
- 6. Аксиоматическая формулировка квантовой механики.
- 7. Операторы. Постулаты квантовой механики.
- 8. Представление волновых функций и операторов векторами и матрицами. Свойства матриц и операций над ними. Примеры применения матриц в качестве операторов.
- 9. Квантовомеханическое описание простых квантовых систем.
- 10.Одномерное движение свободной частицы.
- 11.Трехмерное движение свободной частицы.
- 12. Движение частицы в одномерном бесконечном потенциальном ящике.
- 13. Частица в ящике с конечными стенками.
- 14.Столкновение частиц с потенциальным барьером.
- 15. Проявления туннельного эффекта и надбарьерного отражения в химии.
- 16. Квантовый гармонический осциллятор в химии.
- 17. Правила отбора.
- 18. Движение квантовой частицы в поле центральной силы.
- 19. Жесткий ротатор.
- 20. Момент импульса квантовой системы и его связь с собственными функциями жесткого ротатора.
- 21. Жесткий ротатор в химии.

Рубежный контроль №2

- 1. Атом водорода, водородоподобные атомы и ионы. Многоэлектронные атомы.
- 2. Решение Уравнения Шредингера для атома водорода. Атомные орбитали. 3. Физическая интерпретация квантовых чисел и связь движения с моментом импульса.

- 4. Гамильтониан и физические особенности многоэлектронного атома. 5.Количественный расчет характеристик многоэлектронных атомов.
- 6. Химическая связь и физические эффекты, приводящие к ее образованию. 7. Образование ковалентной связи в молекуле водорода. Образование ионной связи. Стабилизация молекул за счет делокализации электронной плотности. 8. Приближенные методы решения уравнения Шредингера для многоэлектронных атомов и молекул.
- 9.Вариационный метод.
- 10 Вариационный метод Ритца.
- 11. Методы валентных связей и молекулярных орбиталей.
- 12. Приближение Борна-Оппенгеймера.
- 13. Приближение МО ЛКАО. Теория возмущений.

Рубежный контроль №3

- 1. Метод Хартри-Фока.
- 2.Приближение Хартри.
- 3. Требование антисимметрии волновой функции.
- 4. Детерминант Слейтера.
- 5. Кулоновский и обменный операторы. Процедура самосогласования.
- 6. Уравнения Хартри-Фока. Канонические орбитали.
- 7. Особенности и основные свойства уравнений Хартри-Фока. Физический смысл и свойства орбиталей в методе Хартри-Фока.
- 8. Уравнения Хартри-Фока в приближении МО ЛКАО. Полуэмпирические приближения. Метод Хюккеля.
- 9. Молекулярные свойства, определяемые электронной ВФ.
- 10. ВЗМО и НСМО. Теорема Купманса.
- 11. Заряды атомов по Малликену, по Левдину, по Бейдеру, орбитальные заряды.
- 12.Порядки связи и валентности атомов.
- 13. Картина химического связывания в методе МО ЛКАО.
- 14. Взаимодействие орбиталей. Корреляционные диаграммы. Качественная теория МО.
- 15. Локализация орбиталей. Гибридизация. Натуральные орбитали. 16. Натуральные орбитали связей. Квантовохимическая интерпретация валентного штриха и кекулевских структур.
- 17. Современные квантовохимические методы. Точность квантовохимических методов.
- 18. Основные источники погрешностей современных квантовохимических методов.

Возможности современных квантовохимических методов, их ограничения, вычислительная эффективность, требования к вычислительной техники.

- 19.Однодетерминантные методы RHF, UHF, ROHF. Методы конфигурационного взаимодействия. Методы, основанные на теории возмущений.
- 20. Методы связанных кластеров. Теория функционала плотности. Полуэмпирические методы.

3.6. Промежуточная аттестация

Промежуточная аттестация в соответствии с учебным планом по направлению подготовки 06.05.01 «06.05.01 Биоинженерия и биоинформатика», направленность (профиль) «Генетика и селекция сельскохозяйственных животных» по дисциплине «Квантовая химия и строение молекул» проводится в четвертом семестре в виде устного экзамена.

Подготовка обучающихся к прохождению промежуточной аттестации осуществляется в период проведения лекций, лабораторных работ, деловой игры, а также во внеаудиторные часы в рамках самостоятельной работы. Во время самостоятельной работы обучающиеся пользуются основной и дополнительной литературой.

В экзаменационный билет входят теоретические вопросы и практические расчетные задачи профессиональной направленности .

Во время экзамена обучающийся должен дать полный развернутый ответ на вопросы, указанные в билете, решить задачи профессиональной направленности. Преподаватель имеет право задавать дополнительные вопросы по изучаемой дисциплине.

Вопросы, выносимые на экзамен

в четвертом семестре

- 1.Предмет квантовой химии и теории строения молекул. 2.Феноменологические основы квантовой механики Феноменологическая формулировка квантовой механики.
- 3. Волновая функция и уравнение Шредингера. Физический смысл волновой функции.
- 4. Квантовомеханический принцип суперпозиции. Условия, которым должна удовлетворять волновая функция.
- 5. Типы микрочастиц. Стандартная модель.
- 6. Аксиоматическая формулировка квантовой механики.
- 7. Операторы. Постулаты квантовой механики.
- 8. Представление волновых функций и операторов векторами и матрицами. Свойства матриц и операций над ними. Примеры применения матриц в качестве операторов.
- 9. Квантовомеханическое описание простых квантовых систем.
- 10.Одномерное движение свободной частицы.
- 11. Трехмерное движение свободной частицы.
- 12. Движение частицы в одномерном бесконечном потенциальном ящике.
- 13. Частица в ящике с конечными стенками.
- 14.Столкновение частиц с потенциальным барьером.
- 15. Проявления туннельного эффекта и надбарьерного отражения в химии.
- 16. Квантовый гармонический осциллятор в химии.
- 17. Правила отбора.
- 18. Движение квантовой частицы в поле центральной силы.
- 19. Жесткий ротатор.
- 20. Момент импульса квантовой системы и его связь с собственными функциями жесткого ротатора.
- 21. Жесткий ротатор в химии.
- 22. Атом водорода, водородоподобные атомы и ионы. Многоэлектронные атомы.
- 23. Решение Уравнения Шредингера для атома водорода. Атомные орбитали. 24. Физическая интерпретация квантовых чисел и связь движения с моментом импульса.
- 25. Гамильтониан и физические особенности многоэлектронного атома. 26.Количественный расчет характеристик многоэлектронных атомов.
- 27. Химическая связь и физические эффекты, приводящие к ее образованию. 28. Образование ковалентной связи в молекуле водорода. Образование ионной связи. Стабилизация молекул за счет делокализации электронной плотности. 8. Приближенные методы решения уравнения Шредингера для многоэлектронных атомов и молекул.
- 29.Вариационный метод.
- 30. Вариационный метод Ритца.
- 31. Методы валентных связей и молекулярных орбиталей.
- 32. Приближение Борна-Оппенгеймера.
- 33. Приближение МО ЛКАО. Теория возмущений.
- 34. Метод Хартри-Фока.
- 35. Приближение Хартри.
- 36. Требование антисимметрии волновой функции.
- 37. Детерминант Слейтера.
- 38. Кулоновский и обменный операторы. Процедура самосогласования.
- 39. Уравнения Хартри-Фока. Канонические орбитали.
- 40.Особенности и основные свойства уравнений Хартри-Фока. Физический смысл и свойства орбиталей в методе Хартри-Фока.

- 41. Уравнения Хартри-Фока в приближении МО ЛКАО. Полуэмпирические приближения. Метод Хюккеля.
- 42. Молекулярные свойства, определяемые электронной ВФ.
- 43. ВЗМО и НСМО. Теорема Купманса.
- 44. Заряды атомов по Малликену, по Левдину, по Бейдеру, орбитальные заряды.
- 45. Порядки связи и валентности атомов.
- 46. Картина химического связывания в методе МО ЛКАО.
- 47. Взаимодействие орбиталей. Корреляционные диаграммы. Качественная теория МО.
- 48. Локализация орбиталей. Гибридизация. Натуральные орбитали. 49. Натуральные орбитали связей. Квантовохимическая интерпретация валентного штриха и кекулевских структур.
- 50. Современные квантовохимические методы. Точность квантовохимических методов.
- 51.Основные источники погрешностей современных квантовохимических методов. Возможности современных квантовохимических методов, их ограничения, вычислительная эффективность, требования к вычислительной техники.
- 52.Однодетерминантные методы RHF, UHF, ROHF. Методы конфигурационного взаимодействия. Методы, основанные на теории возмущений.
- 53. Методы связанных кластеров. Теория функционала плотности. 54. Полуэмпирические методы.

Пример экзаменационного билета в четвертом семестре:

МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московская государственная академия ветеринарной медицины и биотехнологии – MBA имени К.И. Скрябина»

КАФЕДРА «Радиобиологии и биофизики имени академика А.Д. Белова» ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 1

по дисциплине «Квантовая химия и строение молекул»

- 1. Волновая функция и уравнение Шредингера. Физический смысл волновой функции.
- 2. ВЗМО и НСМО. Теорема Купманса.

3. Задача: Какова размерность ма	трицы Фока, которая будет использована в расчете
азотистых оснований ДНК метод	ом Хартри-Фока-Рутана с базисным набором 6 31+G(d)?
Заведующий кафедрой	М.В. Щукин

МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ, ОПРЕДЕЛЯЮЩИЕ ПРОЦЕДУРЫ ОЦЕНИВАНИЯ ЗНАНИЙ, УМЕНИЙ, НАВЫКОВ И ОПЫТА ДЕЯТЕЛЬНОСТИ, ХАРАКТЕРИЗУЮЩИХ ЭТАПЫ ФОРМИРОВАНИЯ КОМПЕТЕНЦИЙ

Контроль освоения дисциплины «Квантовая химия и строение молекул» на этапах текущей и промежуточной аттестаций проводится в соответствии с действующими положениями:

- Положение о порядке проведения промежуточной аттестации обучающихся;
- Положение о порядке проведения текущего контроля успеваемости;
- Положение о балльно-рейтинговой системе оценки знаний студентов.

Критерии оценивания учебных действий обучающихся при проведении опроса

Отметка	Критерии оценивания
отлично	обучающийся четко выражает свою точку зрения по рассматриваемым вопросам, приводя соответствующие примеры
хорошо	обучающийся допускает отдельные погрешности в ответе
удовлетворительно	обучающийся обнаруживает пробелы в знаниях основного учебного и нормативного материала
неудовлетворительно	обучающийся обнаруживает существенные пробелы в знаниях основных положений дисциплины, неумение с помощью преподавателя получить правильное решение конкретной практической задачи

Критерии оценивания учебных действий обучающихся при проведении тестирования

Результат тестирования оценивается по процентной шкале оценки.

Каждому обучающемуся предлагается комплект тестовых заданий, количество которых приравнивается к 100%:

Отметка	Критерии оценивания
онгилто	больше 85% правильных ответов
хорошо	66-85% правильных ответов
удовлетворительно	51-65% правильных ответов
неудовлетворительно	меньше 50% правильных ответов

Критерии оценивания учебных действий обучающихся при проведении экзамена

Отметка	Критерии оценивания
Отууууу	Выполнены все виды учебной работы, предусмотренные учебным планом. Обучающийся демонстрирует соответствие
Отлично	знаний, умений, навыков приведённым в таблицах показателям,
	оперирует приобретёнными знаниями, умениями, навыками,
	применяет их в ситуациях повышенной сложности. При этом
	могут быть допущены неточности, затруднения при
	аналитических операциях, переносе знаний и умений на новые,
	нестандартные ситуации.
	Выполнены все виды учебной работы, предусмотренные
	учебным планом. Обучающийся демонстрирует соответствие
Хорошо	знаний, умений, навыков приведённым в таблицах показателям,
	оперирует приобретенными знаниями, умениями, навыками,
	применяет их в стандартных ситуациях. При этом могут быть
	допущены незначительные ошибки, неточности, затруднения при
	аналитических операциях, переносе знаний и умений на новые,
	нестандартные ситуации.

удовлетворительно	Не выполнен один или более видов учебной работы, предусмотренных учебным планом. Обучающийся демонстрирует неполное соответствие знаний, умений, навыков приведенным в таблицах показателям, допускаются значительные ошибки, проявляется частичное отсутствие знаний, умений, навыков по ряду показателей, обучающийся испытывает значительные затруднения при оперировании знаниями и умениями при их переносе на новые ситуации.
неудовлетворительно	Не выполнены виды учебной работы, предусмотренные учебным планом. демонстрирует неполное соответствие знаний, умений, навыков приведенным в таблицах показателей, допускаются значительные ошибки, проявляется отсутствие знаний, умений, навыков по большему ряду показателей, обучающийся испытывает значительные затруднения при оперировании знаниями и умениями при их переносе на новые ситуации.